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Abstract:

 

Expanding habitat protection is a common tactic for species conservation. When unprotected hab-
itat is privately owned, decisions must be made about which areas to protect by land purchase or conserva-
tion easement. To address this problem, we developed an optimization framework for choosing the habitat-
protection strategy that minimizes the risk of population extinction subject to an upper bound on funding.
The framework is based on the idea that an extinction-risk function that predicts the relative effects of vary-
ing the quantity and quality of habitat can be estimated from the results of a demographic model of popula-
tion viability. We used the framework to address the problem of expanding the protected habitat of a core
population of the endangered San Joaquin kit fox (

 

Vulpes macrotis mutica

 

) in the Panoche area in central
California. We first developed a stochastic demographic model of the kit fox population. Predictions from the
simulation model were used to estimate an extinction-risk function that depended on areas of good- and fair-
quality habitat. The risk function was combined with costs of habitat protection to determine cost-efficient
protection strategies and risk-cost curves showing how extinction risk could be reduced at minimum cost for
increasing levels of funding. One important result was that cost-efficient shares of the budget used to protect
different types of habitat changed as the budget increased and depended on the relative costs of available
habitat and the relative effects of habitat protection on extinction risk. Another important finding was the
sensitivity of the location and slope of the risk-cost curve to assumptions about the spatial configuration of
available habitat. When the location and slope of the risk-cost curve are sensitive to model assumptions, re-
sulting predictions of extinction risk and risk reduction per unit cost should be used very cautiously in rank-
ing conservation options among different species or populations. The application is an example of how the re-
sults of a complex demographic model of population viability can be synthesized for use in optimization
analyses to determine cost-efficient habitat-protection strategies and risk-cost tradeoffs.

 

Optimización de la Protección de Hábitat Utilizando Modelos de Viabilidad Poblacional

 

Resumen:

 

La protección de hábitat y expansión es una táctica común para la conservación de especies.
Cuando el hábitat sin protección es propiedad privada, las decisiones deben ser tomadas sobre las áreas a
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Introduction

 

Protecting species on private lands is essential to con-
serving biodiversity in the United States, because the
habitat of more than half of all federally listed species is
located on private land ( Wilcove et al. 1996). Although
essential, strategies for protecting species on private
lands are expensive, because securing habitat requires
purchase of title, conservation easement, or land-use in-
centives. Consequently, methods for designing habitat-
protection strategies need to account for financial con-
siderations in addition to the benefits of protection.

We developed a method for determining the habitat-
protection strategy that minimizes the risk of population
extinction within a given budget. The method is based
on the idea that a demographic model of population via-
bility can be used to predict and compare the probabili-
ties of extinction under different options for habitat pro-
tection ( Boyce 1992; Ralls & Taylor 1997; Beissinger &
Westphal 1998; Groom & Pascual 1998). The predic-
tions of the demographic model, in turn, are synthesized
into a risk function that predicts the relative effects of
varying the quantity and quality of habitat (see also McCar-
thy et al. 1995). The risk function and the costs of habitat
protection are incorporated into an optimization model
for determining cost-effective protection strategies.

Although demographic models of population viability
are routinely used to determine the relative effects of
habitat-management options (e.g., Armbruster & Lande
1993; Liu et al. 1995; Lindenmayer & Possingham 1996),

only a few studies address the problem of choosing a
management option when there are competing objec-
tives of maximizing species persistence and minimizing
economic cost. For example, structured decision-making
approaches can be used to inform decision-makers
about the benefit-cost tradeoffs among predefined man-
agement options (Possingham et al. 1993; Ralls & Star-
field 1995; Possingham 1997 ). Optimization methods
can further inform decision-makers by determining the
best option from a wider array of potential management
strategies, and the results can be used to generate cost
curves that show gains in terms of risk reduction associ-
ated with incremental increases in the budget. Optimiza-
tion methods have been widely applied to the problem
of reserve-site selection to maximize the number of spe-
cies covered within budget constraints (e.g., Church et
al. 1996; Ando et al. 1998). Optimization has also been
used to search for efficient land-use allocations when pro-
tection of biodiversity, as measured by a weighted sum of
species viabilities, is one of several land-management ob-
jectives ( Bevers et al. 1995; Montgomery et al. 1999).

There are only a few studies in which optimization
has been combined with demographic models of spe-
cies viability to determine cost-effective protection strat-
egies (Montgomery et al. 1994; Haight & Travis 1997 ).
The computational difficulties of incorporating stochas-
tic demographic models into optimization algorithms re-
quired these studies to address problems with only one
decision variable representing the total area of protected
habitat. The optimization framework we present avoids

 

proteger mediante la compra de terrenos o la expropiación para conservación. Para tratar este problema, de-
sarrollamos un marco de optimización para elegir la estrategia de protección del hábitat que reduce al
mínimo el riesgo de extinción de la población conforme a un límite superior de financiamiento. El marco se
basa en la idea que se puede estimar una función extinción - riesgo que prediga los efectos relativos de variar
la cantidad y la calidad del hábitat a partir de los resultados de un modelo demográfico de viabilidad de la
población. Utilizamos el marco para tratar el problema de ampliar el hábitat protegido de una población nú-
cleo del zorro de San Joaquín (

 

Vulpes mutica macrotis

 

) en el área de Panoche en California central. Primero
desarrollamos un modelo demográfico estocástico de la población del zorro. Las predicciones del modelo de
simulación fueron utilizadas para estimar una función de riesgo de extinción que dependió de áreas de
hábitat de buena y mediana calidad. La función del riesgo fue combinada con costos de protección del hábi-
tat para determinar estrategias de protección costo-eficientes y curvas de riesgo-costo que mostraban cómo el
riesgo de la extinción se podría reducir al mínimo costo para niveles de financiamiento en aumento. Un re-
sultado importante fue que las acciones costo-eficientes del presupuesto utilizadas para proteger diversos ti-
pos de hábitat cambiaron a medida que el presupuesto aumentó y dependieron de los costos relativos de
hábitat disponible y de los efectos relativos de la protección del hábitat sobre el riesgo de extinción. Otro re-
sultado importante fue la sensibilidad de la localización y de la pendiente de la curva de riesgo-costo a
suposiciones sobre la configuración espacial del hábitat disponible. Cuando la localización y la pendiente de
la curva de riesgo-costo son sensibles a las suposiciones del modelo, las predicciones del riesgo de extinción y
de reducción del riesgo por costo unitario resultantes se deben utilizar muy cautelosamente al jerarquizar
opciones de conservación de diversas especies o poblaciones. La aplicación es un ejemplo de cómo los resulta-
dos de un complejo modelo demográfico de la viabilidad de la población se pueden sintetizar para el uso en
el análisis de la optimización para determinar estrategias de protección de hábitat costo-eficientes y com-

 

pensaciones del riesgo-costo.



 

1388

 

Optimizing Habitat Protection Haight et al.

 

Conservation Biology
Volume 16, No. 5, October 2002

 

those computational difficulties by using model predic-
tions to estimate a risk function that is incorporated into
the optimization analysis. The general idea was devel-
oped by Hof and Raphael (1997 ), who used predictions
from a stochastic demographic model to estimate dis-
persal parameters in an optimization model. In our ap-
plication, the risk function can include decision vari-
ables for the amounts of habitat of different qualities and
locations, thereby enhancing the range of habitat-protec-
tion options that can be considered.

We first present the optimization model and then de-
scribe its application to expanding the area of protected
habitat of a core population of the San Joaquin kit fox
(

 

Vulpes macrotis mutica

 

), an endangered species in cen-
tral California. The San Joaquin kit fox was granted fed-
eral protection in 1967 ( U.S. Fish and Wildlife Service
1967 ) because habitat loss resulting from agricultural, in-
dustrial, and urban development had significantly reduced
its abundance and distribution (U.S. Fish and Wildlife Ser-
vice 1998). Currently, kit fox populations are constricted
into fragmented areas of varying size and habitat quality,
and the suspected high mortality of kit fox dispersers
may limit the movement of individuals between popula-
tions. To limit the threat from continued habitat fragmen-
tation, the recovery plan for upland species of the San
Joaquin Valley ( U.S. Fish and Wildlife Service 1998) spec-
ifies the enhanced protection and management of three
geographically distinct populations, which form the core
of a kit fox metapopulation. We focused our analysis on
one of the core populations of kit foxes.

 

An Optimization Model for Habitat Protection

 

Demographic models of population viability are often
used to estimate probabilities of population extinction
under existing habitat conditions and alternative scenar-
ios for habitat expansion or contraction. Our approach
assumed that we could find a suitable risk function to
express the probability of population extinction as a
function of habitat area by using extinction probabilities
obtained from a demographic model of population via-
bility. Based on the risk function, we formulated an opti-
mization model for selecting areas for habitat protection
to minimize the risk of population extinction under a
given set of protection costs and an upper bound on
funding. The model was formulated with the following
notation:
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The objective of the optimization problem (Eq. 1) was
to minimize the probability of population extinction,
which was a function of the area of protected habitat by
type. The first set of constraints (Eq. 2) defined the area
of protected habitat by type as the sum of the already-
protected area and the newly protected area. The sec-
ond constraint (Eq. 3) ensured that the total amount of
funding required for additional habitat protection did
not exceed the budget. The unit cost of protection, 
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,
can differ by habitat type, but the unit cost is constant for
a given type. The third set of constraints (Eq. 4) bounded
the area of habitat available for protection.

To make the model more realistic, we relaxed the as-
sumption of constant unit costs because the cost of pro-
tecting land of a given habitat quality may vary depend-
ing on property enhancements, location, and method of
securing protection (e.g., with an easement or purchase
of title). Unit costs of protecting land of each habitat
type were represented with a piecewise linear total cost
curve (Murty 1976). First, land of habitat type 
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Then, the decision variable 
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partitioned and included in the model as above. Then, for
a given set of prices and an upper bound on funding, the
optimization model can be used to determine the best pro-
tection strategy in terms of the amount of habitat to secure
by quality class. Furthermore, by re-solving the model with
incrementally higher upper bounds on funding, a relation-
ship between extinction risk and funding can be deter-
mined. This risk-cost curve shows the benefit in terms of a
reduced extinction risk as a result of increased funding.

Application to Kit Fox Conservation

Background

The San Joaquin Valley occupies the southern two thirds
of California’s great Central Valley and encompasses
about 20% of the land area of the State ( Fig. 1). The cli-
mate is semiarid, with hot, dry summers and cool, wet
winters. Precipitation occurs as rainfall primarily be-
tween November and April in quantities that vary greatly
from year to year. For example, annual rainfall in Bakers-
field, California, was 5–25 cm from 1980 to 1995
(Cypher et al. 2000). Although the valley floor was once

dominated by grassland, scrubland, and wetland com-
munities, it is now dominated by agricultural, industrial,
and urban development. Only a few remnant grasslands
remain on the valley’s perimeter.

With the loss of its natural communities, the San
Joaquin Valley has experienced a great loss of biodiver-
sity. As of 1998, 75 species of plants and animals were
listed or candidate species, including the San Joaquin kit
fox ( U.S. Fish and Wildlife Service 1998). The recovery
plan for upland species of the San Joaquin Valley desig-
nated the kit fox as an umbrella species and has a goal of
establishing a viable complex of populations of kit foxes
on public and private lands throughout their geographic
range ( U.S. Fish and Wildlife Service 1998).

Although the San Joaquin kit fox once inhabited rela-
tively flat grasslands and scrubland throughout the San
Joaquin Valley (Grinnell et al. 1937 ), habitat loss and al-
teration curtailed its distribution so that high-density
populations of kit foxes are now found primarily on a
few public and private grasslands. Three geographically
distinct populations have been designated a high prior-
ity for enhancement and protection: the Carrizo Plain
and western Kern County populations in the southern
part of the valley and the Panoche-area population in the

Figure 1. Habitat of San Joaquin 
kit fox on public and private land 
in the Panoche area of California.
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western portion of the valley ( U.S. Fish and Wildlife Ser-
vice 1998). These are viewed as core populations in the
recovery plan because each inhabits a large amount of
good-quality, publicly owned habitat, each is subject to a
different set of environmental conditions, and each can
serve as a source of kit foxes for neighboring satellite
populations.

Detailed information and literature reviews of the life
history and ecology of the San Joaquin kit fox have been
provided by the U.S. Fish and Wildlife Service (1998),
White and Garrott (1999), and Cypher et al. (2000), and
we only summarize the information important to model
building. Kit foxes are nocturnal predators of rodents
and rabbits. Adult pairs remain together and maintain
large and relatively nonoverlapping home ranges. Home
ranges from �2.6 km2 up to approximately 31 km2 have
been reported. A kit fox pair breeds once a year and has
a minimum breeding age of 1 year. Mating takes place
between December and March. Reproductive success is
correlated with prey availability: success drops when prey
is scarce ( White & Ralls 1993; White & Garrott 1997 ). If
reproduction is successful, a litter of two to six pups
emerges from the den in spring. Pups reach adult size
and disperse from August through September in search
of mates and vacant home ranges. Dispersal distances
vary widely, with male foxes known to travel over 40
km. Pups and adults are known to disperse through dis-
turbed habitat, including agricultural fields, oil fields and
rangelands, and across highways and aqueducts.

Because of the endangered status of the kit fox, con-
siderable research has been conducted in the last 15
years to identify natural factors that have influenced the
dynamics of the western Kern County and Carrizo Plain
populations. Food availability was the most important
factor. Prey abundance and kit fox numbers varied annu-
ally with a previous year’s precipitation ( Ralls & Eber-
hardt 1997; Cypher et al. 2000). Kit fox numbers had a
strong positive relationship with prey availability ( White
et al. 1996; Cypher et al. 2000), probably because prey
reductions caused lower reproductive success in kit
foxes ( White & Ralls 1993; White & Garrott 1997 ). An
important conclusion is that high-amplitude fluctuations
in kit fox numbers may be intrinsic to the desert systems
they inhabit because of large fluctuations in annual pre-
cipitation and prey availability ( White & Garrott 1999;
Dennis & Otten 2000).

We used these observations to construct a demo-
graphic model of a kit fox population for the evaluation
of habitat-protection strategies in the Panoche area. We
focused on the Panoche area because a large amount of
kit fox habitat is located on public land and because op-
portunities exist to secure additional habitat on nearby
private land. In the Panoche area, public land adminis-
tered by the U.S. Bureau of Land Management (BLM )
contains 312 km2 of relatively flat grassland suitable for
kit foxes ( Fig. 1). Because kit foxes occur in higher den-

sities and are less vulnerable to mortality from larger
canids on flat or rolling grasslands ( Warrick & Cypher
1998), we classified habitat quality based on slope (for
an alternative approach to defining kit fox habitat see
Gerrard et al. 2001). Good habitat had slopes of 0–5%
and fair habitat had slopes of 5–10%. Places with slopes
of �10% were assumed to be unsuitable for kit foxes.
Good and fair habitat cover 62 km2 and 250 km2, respec-
tively. Over 600 km2 of suitable habitat exist in private
ownerships surrounding the BLM land ( Fig. 1). None of
the suitable habitat on private land is currently protected.

To estimate the maximum number of home ranges in
good and fair habitat on BLM land, we used observations
of kit fox density in the western Kern County popula-
tion ( B.C., unpublished data). There, kit fox density in
good habitat (0.51/km2) was twice the density in fair
habitat (0.26/km2). Lower kit fox density in fair habitat
probably resulted from a combination of higher preda-
tion risk and lower food availability. Assuming two kit
foxes per home range, we estimated that home ranges in
good and fair habitat averaged 3.9 km2 and 7.8 km2, re-
spectively. Using these home-range sizes and the
amounts of good and fair habitat, we estimated that BLM
land in the Panoche area contained a maximum of 16
and 32 home ranges in good and fair habitat, respec-
tively. To demonstrate the optimization model, we as-
sumed that enough private land to make 48 home ranges
each of good and fair habitat was adjacent to the BLM
land and available for protection.

We wanted to predict and compare the probabilities of
extinction of the kit fox population in the Panoche area
under different options for protecting additional habitat.
As a baseline, we predicted kit fox population viability on
312 km2 of already-protected BLM land, assuming that sur-
rounding private land was unsuitable for kit foxes. We
then predicted how the viability of the kit fox population
would change if additional habitat adjacent to the BLM
land was protected. Finally, we predicted the effect of
protecting a disjunct area of habitat separated from the
BLM land by unprotected areas of unsuitable habitat.

Simulating Kit Fox Populations

The structure of the stochastic demographic model of kit
fox population viability was similar to models of other ter-
ritorial animals (Lamberson et al. 1994; Haight et al.
1998). We assumed that a contiguous habitat patch con-
sisted of a fixed number of potential kit fox home ranges,
each classified as good or fair habitat. Each home range
could support a single kit fox family. The annual change
in each kit fox family was predicted with an age-struc-
tured model describing the number of kit foxes by age
and sex beginning midwinter prior to birth. Predictions
were made sequentially for birth, mortality, and dispersal.

Birth took place in late winter. Reproduction in each kit
fox family required a male and female �12 months old.
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Because temporal variation in prey availability is linked to
kit fox reproductive success and litter size, we modeled
reproduction using a two-step process (for a similar ap-
proach see Loison et al. 2001). In the first step, we picked
the reproductive success rate for the year from a normal
distribution with a mean of 0.60 and a standard deviation
of 0.20, based on the observed reproductive success of
kit fox families in the western Kern County population
from 1981 to 1995 (Cypher et al. 2000). The reproductive
success of each kit fox pair was determined by comparing
a random number chosen from a uniform distribution be-
tween 0 and 1 to the chosen success rate. In the second
step, the litter size of each successful pair was selected
from a discrete probability distribution of three to five
pups, with a mean of four pups, again based on observa-
tions of Cypher et al. (2000). Unsuccessful pairs were as-
sumed to hold their territories without producing litters.

Mortality took place during spring and summer. The
number of kit foxes that died in each age class was a bi-
nomial random variable with probability depending on
age and habitat quality. In good habitat, mortality rates
of pups and adults were 0.60 and 0.30, respectively,
consistent with recent estimates from survival studies
of kit fox populations in western Kern County (Cypher
& Spencer 1998) and the Carrizo plain ( Ralls & White
1995). In fair habitat, we used pup and adult mortality
rates of 0.65 and 0.35, respectively, to account for the
higher risk of mortality caused by larger canids ( War-
rick & Cypher 1998). We assumed that all kit foxes
reaching the 6-year-old age class died.

All surviving pups dispersed in autumn in search of
mates and home ranges. Although there is little quantita-
tive information about kit fox dispersal patterns and be-
havior, we believe that dispersing kit foxes seek home
ranges in good-quality habitat rather than dispersing at
random. In the simulation model, we assumed that dis-
persing pups could search for mates and territories
throughout the contiguous habitat patch. Furthermore,
we assumed that pups distinguished between good and
fair habitat and searched first in areas of good habitat.
Each disperser was randomly assigned to a home range
with an available mate. If there were no available mates,
the disperser was randomly assigned to a vacant home
range. If vacancies were not available in areas of good
habitat, the same search routine was applied to areas of
fair habitat. If no vacancies were available in fair habitat,
dispersers were assumed to leave the patch and die. In
the sensitivity analysis, we assumed that 10% of the dis-
persers from the saturated core patch could reach a dis-
junct patch of good habitat that was separated from the
core area by unsuitable and unprotected habitat.

Following dispersal, we updated the age distribution
of kit foxes in each family unit. The updated age distri-
bution approximated the situation in February and was
the basis for the next year’s projection.

Estimating the Extinction-Risk Function

The goal of the simulation analysis was to estimate a
suitable risk function that related the probability of kit
fox population extinction to habitat area. We used the
stochastic demographic model to predict probabilities
of extinction of the kit fox population in contiguous
habitat patches with different amounts of good and fair
habitat. The baseline patch represented the already-
protected BLM land covering 16 home ranges of good
habitat and 32 home ranges of fair habitat. To predict
the effects of protecting additional habitat adjacent to
the BLM land, we predicted extinction risks of popula-
tions in patches with up to 64 home ranges in good
habitat and 80 home ranges in fair habitat. Altogether,
simulations were performed for 49 different patch con-
figurations, each with a different combination of habi-
tat area and quality class. Each simulation had 1000
replicates in which we assumed that the initial patch
was fully occupied by kit fox families. The outcome of
each simulation was the proportion of replicates in
which population size was �10 in 100 years. This pro-
portion was our estimator of the probability of popula-
tion extinction. Although our choice of 10 individuals
as the threshold for quasi-extinction was arbitrary, we
used the threshold because smaller populations would
almost certainty go extinct from causes ranging from
unbalanced sex ratios to difficulties of individuals find-
ing mates.

We used the minimum logit chi-squared method, as
defined by Maddala (1983), to estimate the relation-
ship between extinction risk and the amounts of good
and fair habitat. This logit model is appropriate when
there are multiple observations of the binary response
variable for each level of the independent variables in
the experimental design. In our case, the binary re-
sponse variable was whether or not the kit fox popu-
lation was extinct after 100 years in a given habitat
configuration, and 1000 observations of this response
variable were obtained from simulation. We let i be
the proportion of the 1000 replicates in which the
population became extinct in habitat configuration i,
and we let i/(1 � i) be the estimated odds of ex-
tinction. In the logit model, the log of the odds of ex-
tinction was assumed to be a linear combination of habi-
tat configuration

(6)

where yi is a vector of habitat amounts and �� is a vector
of parameters. Because the log of the odds of extinction
is a continuous variable and �∞ � log[pi/(1 � pi)] � ∞,
ordinary linear regression can be used to estimate �	:

( 7)
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where 
i is the regression error. However, because
Var(
i) � 1/[(ni pi (1 � pi)], weighted least-squares re-
gression with weights [ni i(1 � i)]

1/2 was used to esti-
mate �� in Eq. 6 to remove heteroscedasticity in the re-
gression error (Maddala 1983).

Optimizing Habitat Protection

With the estimated extinction-risk function, we solved
the optimization model (Eqs. 1–5) for a given set of unit
costs of habitat protection and increasing upper bounds
on available funding. The optimization results allowed
us to plot a risk-cost curve showing how much extinc-
tion risk could be reduced by incrementally increasing
the available funding. Finally, we repeated the analysis
using a different assumption about the spatial configura-
tion of habitat available for protection.

Although habitat can be protected by conservation
easements, landowner incentives, or outright land pur-
chase, for simplicity we based our example only on land
purchase. The cost and availability of land varied by hab-
itat quality (Table 1). Good-quality habitat was $500–
$2000/ha ($200–$800/acre), and fair-quality habitat was
$125–$500/ha ($50–$200/acre). The difference in cost
between good and fair habitat reflected slope and ranch-
land productivity. Good habitat was flat and suitable for
dryland farming, whereas fair habitat included rolling
hills suitable for cattle grazing. The unit costs were in
the range of prices from recent ranch sales in surround-
ing San Benito and Fresno counties (Sergio Garcia,
Range/Livestock Advisor, University of California Coop-
erative Extension, San Benito County, personal commu-
nication). The amounts of land available for protection
by quality and price class ( Table 1) were devised to illus-
trate the optimization model. We assumed that relatively
small amounts of good-quality habitat were available in

p̂ p̂

the lower cost classes and that a large amount of fair
habitat was available in the smallest cost class.

It is well known that interpatch dispersal and be-
tween-patch variation in habitat quality can affect pre-
dictions of risk for populations in fragmented habitat
( Lindenmayer et al. 2000). Therefore, the purpose of the
sensitivity analysis was to determine whether a different
assumption about the spatial configuration of kit fox
habitat available for protection affected the location and
shape of the extinction-risk surface and optimal protec-
tion strategy. In the simulation methods described
above, all habitat available for protection was assumed
to be adjacent to BLM land, and dispersing kit foxes
searched for mates and vacant home ranges throughout
a contiguous habitat patch formed by the BLM land and
protected private land. In the sensitivity analysis, we as-
sumed that the only good-quality habitat available for
protection was in a contiguous patch separated from the
already-protected BLM land by unsuitable habitat. As be-
fore, fair-quality habitat available for protection was adja-
cent to the BLM land. In this configuration, we assumed
that dispersing kit foxes first searched for mates and va-
cant home ranges within the contiguous core patch
formed by the BLM land and the protected fair habitat
on adjacent private land. If this core patch was satu-
rated, we assumed that dispersers could reach the dis-
junct patch of protected good habitat on private land
with a probability of 0.10, which represented a rela-
tively high rate of dispersal mortality. The kit fox popu-
lation in the disjunct patch was simulated with the same
demographic model, and kit foxes that dispersed from a
saturated disjunct patch could reach the core patch with
a probability of 0.10.

The optimization model was solved on an IBM300PL
personal computer using the integrated solution pack-
age GAMS/MINOS 2.25 (GAMS Development Corpora-
tion 1990), which was designed for large and complex
linear and nonlinear programming problems. Input files
were created with GAMS (General Algebraic Modeling Sys-
tem), a program designed to generate data files in a stan-
dard format that optimization programs can read and pro-
cess. Because the model (Eqs. 1–5) had a nonlinear
objective function with linear constraints, GAMS/MINOS
used a reduced-gradient algorithm combined with a
quasi-Newton algorithm (Murtagh & Saunders 1978) to
find the solution. Solution times were �1 second.

Results

Predictions of extinction risk in 100 years are plotted in
Fig. 2a for the case in which all habitat available for pro-
tection is adjacent to BLM land. If kit fox habitat was lim-
ited to the already-protected BLM land (16 good-quality
home ranges and 32 fair-quality home ranges), the pre-

Table 1. Cost and availability of good- and fair-quality habitat
for San Joaquin kit foxes.

Cost Availability

Habitat $/ha
$/home
range* ha

no.
home
ranges

Good
500 195,000 1,560 4

1,000 390,000 1,560 4
1,500 585,000 6,240 16
2,000 780,000 9,360 24

Fair
125 97,500 18,720 24
250 195,000 6,240 8
375 292,500 6,240 8
500 390,000 6,240 8

* Home ranges of good and fair habitat are 390 and 780 ha,
respectively.
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dicted probability of extinction of a kit fox population
that initially occupied the BLM land was 0.58 ( Fig. 2a).
We used this risk prediction for comparative purposes,
and it should not be viewed as an absolute estimate of
kit fox population risk in the Panoche area because of
uncertainties in various components of the demo-
graphic model. Relative to this prediction, the greatest
risk reduction was obtained by protecting additional
good habitat adjacent to the BLM land ( Fig. 2a). For ex-
ample, predicted extinction risk dropped to 0.04 when
48 additional good-quality home ranges were protected.

In contrast, predicted extinction risk dropped to 0.35
when 48 additional fair-quality home ranges were pro-
tected. Protecting good-quality habitat resulted in
greater reductions in extinction-risk predictions because
good-quality habitat had lower pup and adult mortality
rates.

The predictions from the simulations were used to es-
timate the following risk function:

(8)

where p is the probability of extinction in 100 years and
y1 and y2 are the numbers of home ranges in good and
fair habitat, respectively. The numbers in parentheses
are the standard errors of regression coefficients, and all
coefficients were significant at the 0.001 probability
level. A variety of models with quadratic and interaction
terms were estimated, and the final selection was based
on the goodness of fit (adjusted R2 � 0.990). The plot of
residuals versus estimates suggested that the error vari-
ance was homogenous.

We used the risk function (Eq. 8), the optimization
model (Eqs. 1–5), and the habitat cost and availability
information in Table 1 to determine cost-efficient strate-
gies for protecting additional habitat adjacent to the
BLM land for increasing levels of funding. With zero
funding, 16 and 32 home ranges of good and fair habi-
tat, respectively, were protected on BLM land (Table 2).
As funding increased, the amounts of good and fair hab-
itat protected depended on the relative cost of available
habitat and the relative reduction in predicted extinc-
tion risk. For example, when the upper bound on fund-
ing increased from zero to $2 million, the cost-efficient

log
p

1 p–
------------ =

3.0244763 0.151321y1– 0.0193473y2– 0.000979y1
2

+

0.040858( )  0.002093( )     0.000365( )     0.000027( )

Table 2. Cost-efficient habitat protection under alternative funding 
levels when both good and fair habitat are adjacent to the core 
habitat on already-protected land of the Bureau of 
Land Management.

Funding* 
($, millions)

Extinction
risk

No. home ranges

good fair

0 0.580 16 32
2 0.340 24 32
5 0.235 24 56

14 0.073 40 56
16 0.061 40 64
24 0.033 51 64
27 0.027 51 72
32 0.021 58 72
35 0.018 58 80
40 0.015 64 80

*Each funding level represents a point where the cost-efficient strat-
egy switched from protecting one habitat type to another.

Figure 2. Probability of extinction in 100 years versus 
amount of protected kit fox habitat when (a) avail-
able habitat is adjacent to the habitat on already-pro-
tected land of the Bureau of Land Management ( BLM) 
and ( b) good habitat is a disjunct patch separated 
from the habitat on BLM land. The black dot repre-
sents extinction risk if kit fox habitat were limited to 
BLM land (16 good-quality home ranges and 32 fair-
quality home ranges).
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strategy was to secure up to 8 home ranges of good
habitat, reducing extinction risk from 0.580 to 0.340. In
this range of funding, protecting a home range of good
habitat was preferred despite a cost two to four times
that of protecting a home range of fair habitat. Good
habitat was preferred because each additional home
range of good habitat provided a four to six times
greater reduction in extinction risk compared with pro-
tecting a home range of fair habitat. When the upper
bound on funding increased from $2 million to $5 mil-
lion, the cost-efficient strategy was to protect 8 home
ranges of good habitat and up to 24 home ranges of fair
habitat, reducing extinction risk from 0.340 to 0.235.
Once 8 home ranges of good habitat had been secured,
protecting a home range of fair habitat was preferred,
despite its relatively small reduction in extinction risk
because the cost of protecting an additional home
range of fair habitat ($0.097 million) was less than one-
fifth of the cost of the available good habitat ($0.585
million per home range).

We used the solutions of the optimization model to con-
struct a risk-cost curve showing how the risk of extinction
in 100 years could decrease for increasing levels of funding
(Fig. 3). Extinction risk decreased rapidly from 0.58 to 0.10
for funding levels of up to $10 million. An additional $10
million was required to reduce extinction risk from 0.10 to
0.05. Additional increments of funding resulted in very
small reductions in extinction risk.

The risk-cost curve ( Fig. 3) is a frontier showing the
minimum extinction risk obtainable for different levels
of funding. The frontier is useful for identifying subopti-
mal protection strategies, which result in higher proba-
bilities of extinction for any given level of funding. For
example, with $10 million, the optimal strategy was to
protect 17 home ranges of good habitat and 24 home
ranges of fair habitat with an extinction risk of 0.10 on
the risk-cost frontier. If $10 million was used instead to
protect 48 home ranges of fair habitat, extinction risk
would be 0.33 (point A). If $10 million was used to pro-
tect 21 home ranges of good habitat, extinction risk
would be 0.13 (point B). In this case, the strategy of pro-
tecting as much good habitat as possible is almost as ef-
fective in reducing extinction risk as the optimal strat-
egy, which involves the protection of a mix of good and
fair habitat.

In the sensitivity analysis, we changed an assumption
about the spatial configuration of available kit fox habi-
tat so that the only available good-quality habitat was in
a contiguous patch separated from the already-protected
BLM land. This change affected the shape of the extinc-
tion-risk surface ( Fig. 2b). The biggest changes were risk
predictions associated with protecting small amounts of
good-quality habitat. Protecting a small patch of up to 16
good home ranges did not reduce the predicted extinc-
tion risk because successful movement of kit foxes be-
tween the core BLM land and the disjunct patch was un-

likely and the disjunct patch was not large enough to
sustain a population. When a larger disjunct patch of
good habitat was protected, the reduction in extinction
risk was larger.

We used the predictions of extinction risk in Fig. 2b to
estimate the risk function:

(9)

A model with quadratic and interaction terms was selected
based on its goodness of fit (adjusted R2 � 0.981). The
numbers in parentheses are the standard errors of regres-
sion coefficients, and all coefficients were significant at the
0.005 probability level. The plot of residuals versus esti-
mates suggested that the error variance was homogenous.

With risk function equation 9, cost-efficient protec-
tion strategies differed from those obtained with risk
function equation 8. When the upper bound on funding
increased from $0 to $10 million, the cost-efficient strat-
egy was to secure up to 48 home ranges of fair habitat,
reducing extinction risk from 0.580 to 0.352 ( Table 3).
In this range of funding, protecting a home range of fair
habitat was preferred because it was cheaper and pro-
duced a greater reduction in extinction risk than
protecting a home range of good habitat. When funding
was in the range of $10–$12 million, the best strategy

p
1 p–
------------log 1.234696 0.017624y1 0.035868y2–+=

0.065231( ) 0.001626( ) 0.002010( )

0.000917y1
2

– 0.000102y2
2

0.000252y1y2+ +

0.000017( ) 0.000017( ) 0.000015( ).     

Figure 3. Risk-cost curves for protection of cost-effi-
cient kit fox habitat. The solid line is the risk-cost curve 
when available habitat is adjacent to the habitat on 
already-protected land of the Bureau of Land Manage-
ment (BLM). Points A and B show extinction risks as-
sociated with suboptimal protection strategies at the 
$10 million funding level. The dashed line is the risk-
cost curve when the only good habitat available for 
protection is separated from the habitat on BLM land.
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was to protect all 48 home ranges of fair habitat and up
to 8 home ranges of good habitat, reducing predicted
extinction risk from 0.352 to 0.351. Fair habitat contin-
ued to be preferred because not enough funding was avail-
able to secure a large patch of good habitat. When funding
increased from $12 to $18 million, the optimal strategy
switched to protecting 32 home ranges of fair habitat and
18–27 home ranges of good habitat, reducing extinction
risk from 0.351 to 0.291. Here, enough funding was avail-
able to protect a relatively large patch of good habitat,
which provided a greater reduction in predicted extinction
risk than did protecting a large amount of fair habitat adja-
cent to the BLM land. As a result, fewer home ranges of fair
habitat were protected than with lower levels of funding.
With funding levels of $18–$33 million, an even greater
share of the budget was spent protecting a large patch of
good-quality habitat, reducing extinction risk from 0.291 to
0.101. With funding greater than $33 million, the focus
was on protecting fair habitat once all 48 available good-
quality home ranges had been protected.

Changing the assumption about the location of good-
quality habitat available for protection not only affected
the optimal protection strategy but also the location of
the risk-cost frontier ( Fig. 3). The risk-cost curve obtained
when good habitat was separated from the already-
protected BLM land is located above the curve obtained
when the habitat was adjacent, indicating that incre-
ments of funding do not produce as much risk reduc-
tion. This is an example of how the location and slope of
the risk-cost curve is sensitive to the assumptions in the
underlying demographic model.

Discussion

One of the strengths of our optimization framework is
its recognition of the conflicting objectives of species con-
servation planning ( Possingham et al. 1993; Montgomery
et al. 1994; Ralls & Starfield 1995; Haight & Travis 1997;
Possingham 1997 ). On the one hand, decision-makers

seek those activities that maximize population viability,
whereas on the other hand they must minimize cost
because funds for conservation are limited. Developing
cost-effective conservation plans and analyzing risk-cost
tradeoffs are important when planning involves expand-
ing habitat protection on expensive private lands. Cost
considerations are also important on public lands where
habitat protection precludes benefits from other land
uses such as logging or developed recreation. The meth-
ods that we described for developing cost-effective habi-
tat-protection strategies and analyzing risk-cost tradeoffs
should promote and focus discussion among decision-
makers about conservation actions and priorities on both
public and private lands.

Another strength of the optimization framework is its fo-
cus on the relative effects of different habitat-protection
options. There is an emerging concensus among people
involved in endangered-species management that demo-
graphic models should be used cautiously in population vi-
ability analysis because of concerns about the accuracy of
predictions (Beissinger & Westphal 1998; Lindenmayer et
al. 2000; Ralls et al. 2002). Rather than taking a prediction
of extinction risk at face value to make a decision, demo-
graphic models of population viability are better used to
compare the effects of different management options with
the goal of setting priorities (Beissinger & Westphal 1998;
Ralls et al. 2002). Our optimization framework applies this
strategy by synthesizing model predictions of the effects of
different habitat-protection options into an extinction-risk
function. Then, the risk function is combined with manage-
ment costs to determine which options are cost-effective
under different budget constraints.

One important result of our kit fox application was
that cost-efficient shares of the budget used to protect
different types of habitat changed as the budget in-
creased and depended on the relative costs of available
habitat and the relative effects on extinction risk. For ex-
ample, protecting a unit of high-quality habitat was usu-
ally cost-efficient because it reduced extinction risk much
more than protecting a unit of fair-quality habitat. How-
ever, if a unit of fair-quality habitat was much cheaper,
then funding was better spent protecting many units of
fair-quality habitat. The sensitivity analysis highlights the
need to accurately determine the costs and effects of pro-
tecting habitat of different qualities. For example, we did
not explore the costs of conservation easements that pro-
tect habitat at lower cost than land purchase.

Another important result of our application was the
sensitivity of the location and slope of the risk-cost
curve to assumptions built into the kit fox population
model. The location of a risk-cost curve shows predic-
tions of extinction risk under different budgets, whereas
the slope of the curve predicts how much extinction
risk can be reduced with incremental budget increases.
These quantities can be used as parameters in ranking
formulas to help decision-makers set priorities among

Table 3. Cost-efficient habitat protection under alternative funding 
levels when good habitat is a disjunct patch separated from the core 
habitat on already-protected land of the Bureau of
Land Management.

Funding*
($, millions)

Extinction
risk

No. home ranges

good fair

0 0.580 16 32
10 0.352 16 80
12 0.351 24 80
18 0.291 43 64
33 0.101 64 56
40 0.089 64 80

*Each funding level represents a point where the cost-efficient strat-
egy switched from protecting one habitat type to another.
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conservation projects for different species or popula-
tions (e.g., Weitzman 1998). In our application, chang-
ing the assumption about the location of habitat avail-
able for protection affected the location and slope of the
risk-cost curve ( Fig. 3). When the location and slope of
risk-cost curves are sensitive to model assumptions, re-
sulting predictions of extinction risk and risk reduction
per unit cost should be used cautiously in ranking conser-
vation options among different species or populations.

Previous attempts to incorporate stochastic demographic
models of population viability into optimization programs
were limited by computational difficulties, so that applica-
tions involved only one decision variable representing the
total amount of habitat protected (Montgomery et al. 1994;
Haight & Travis 1997). Our approach avoids some of those
difficulties by using the simulation model in an experimen-
tal design that gives predictions of extinction risk as a
response surface. The decision variables defining the re-
sponse surface can represent the amounts of habitat of
different qualities and locations. Then, an appropriate risk
function can be fit to the response surface and incorpo-
rated into an optimization model. Because the fitted risk
function is much simpler than the demographic model, op-
timization models that evaluate a wider range of habitat-
protection strategies are tractable.

Estimating an equation that relates the parameters of a
demographic model of population viability to predicted
extinction risk has been done. McCarthy et al. (1995)
used logistic regression to investigate the sensitivity of
extinction-risk predictions from a population model to
changes in population-model parameters. They used an
experimental design in which the binary response vari-
able for whether or not a population went extinct was ob-
served for a random sample of values of the population-
model parameters. Because fewer than 10 observations
of the response variable were obtained at each level of
the independent variable, maximum-likelihood methods
were used to estimate the relationship between extinc-
tion risk and the population-model parameters. The ex-
perimental design of McCarthy et al. (1995) was more ef-
ficient than the one we used in the sense that it used
fewer replications of the population model. Further-
more, McCarthy et al. (1995) found that extinction-risk
predictions obtained from their logistic-regression model
were almost the same as predictions obtained from the
population model. As a result, logistic regression should
be considered an alternative to the minimum-logit chi-
square method used here when computational effort is
an important consideration in experimental design.

The relatively simple optimization model we used in
our kit fox application can be extended to handle more
complex problems. For example, the optimization frame-
work could be applied to conservation decisions for a
set of interacting subpopulations in fragmented habitat.
This could be accomplished by defining a decision vari-
able for the protection of each patch and using a spa-

tially explicit population model to simulate extinction
risk for predefined combinations of patches. Then, an
extinction-risk function could be fit to the predictions
and incorporated into an optimization model. The opti-
mization model, in turn, could be used to determine
cost-effective habitat location and sensitivity to assump-
tions about interpatch dispersal and between-patch vari-
ation in habitat quality, two parameters that can greatly
affect population predictions (Lindenmayer et al. 2000).

We focused our optimization framework on habitat-
protection strategies for one kit fox population. If risk-cost
curves are computed for many independent populations, a
larger-scale optimization model could be formulated to
help allocate limited funds among the populations (Hof &
Raphael 1993; Bevers et al. 1995; Montgomery et al. 1999).
For example, suppose we have I independent populations
and Xi is a decision variable for the amount of funding
spent on habitat protection for population i. For each
population there is a risk-cost curve Pi (Xi) giving the
probability of extinction in 100 years as a function of the
amount of funding spent on habitat protection. If the up-
per bound on funding is B, then the allocation problem
can be formulated to minimize the extinction risk of all
populations subject to the upper bound on funding:

(10)

(11)

(12)

Results of this optimization model can help determine
which populations should be given highest priority for
additional habitat protection. By incrementally increas-
ing the upper bound on funding and re-solving the prob-
lem, we can generate a risk-cost curve for the set of pop-
ulations. We are currently applying this larger-scale
model to the problem of allocating limited funds among
independent populations of San Joaquin kit foxes.
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